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Abstract— Robotic grasping faces catastrophic forgetting as 
knowledge of manipulated objects fades when handling new items. 
This paper introduces “replay tail,” a memory technique using an 
RGBD camera to capture tabletop scenes, convert observations to 
3D point clouds, and generate vertically projected heightmaps. 
Building on deep Q-learning combining deep neural networks and 
reinforcement learning, replay tail replays recent heightmap 
experiences to maintain adaptation. By emphasizing recent 
interactions during memory replay, grasping policies continuously 
recalibrate, preventing performance degradation despite 
emerging novelty. Experiments with 2000 simulated automated 
grasping attempts show 89% average success rates using replay 
tail versus 86% otherwise. These highlights replay tail’s potential 
to enable real-world deployment by mitigating catastrophic 
forgetting through consolidated recent memories. 
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I. INTRODUCTION 
Robotic grasping, a crucial and intricate skill, has been a 

longstanding challenge in robotics research for over half a 
century [1]. Traditional methods require a detailed 
understanding of the structure, position, and orientation of an 
object in order to determine the optimal grasping strategy. By 
contrast, analytical approaches rely on geometric information 
using the physical dimensions and shapes of objects to guide 
the grasping process. 

Recent data-driven techniques [2] have shown significant 
promise for robotic grasping using machines and deep neural 
networks to directly map visual observations to the grasp 
parameters. However, these approaches often depend on large, 
labeled datasets, making the data collection process time- and 
power-intensive. The development of adaptable and 
generalizable systems for robotic grasping has been further 
advanced through research into real-time grasp force selection 
policies [3] and the design of flexible grasp tools [4] that can 
handle a variety of objects. Additionally, the exploration of 
object characteristics such as center of mass and mass 
determination [5] plays a crucial role in enhancing the precision 
of robot grasping mechanisms. 

Recent research has adopted an end-to-end deep learning 
approach directly from RGB images to determine position and 

orientation. For instance, Pinto and Gupta [6] trained a 
convolutional neural network (CNN) on over 50k attempts to 
predict grasp success from RGB images in a self-supervised 
manner. Mahler et al. [7] proposed GQ-CNN, a CNN-based 
model that rates grasp candidates on synthetic point clouds 
using an analytic grasping metric. Levine et al. [8] collected 
over 800k grasp attempts on 14 robots to train a deep 
visuomotor policy end-to-end, from monocular images to 
motion commands. 

Deep reinforcement learning (DRL) offers an appealing 
framework for acquiring dexterous grasping skills through pure 
self-supervised interactions using reward signals instead of 
manual oversight [9]. Quillen et al. [10] compared various deep 
reinforcement learning techniques for vision-based grasping in 
simulation, including DQN, DDPG, and TRPO. Breyer et al. 
[11] evaluated different input modalities like depth, 
segmentation, and simulation vs. reality for deep reinforcement 
learning of grasping. However, a fundamental limitation 
hampering the real-world deployment of these learning-driven 
systems is their tendency to experience catastrophic forgetting 
[12]. Older knowledge of previously manipulated items tends 
to fade as new objects are encountered and information is 
encoded in the network weights. This significant domain shift 
degrades the grasping performance when novel objects must be 
handled alongside the existing objects.  

Our work closely aligns with the research conducted by 
Zeng et al. [13], in which the synergies between pushing and 
grasping were learned through Deep Q-learning. They 
demonstrated an effective grasping performance on a pile of 
objects by sequencing actions that combined pushing and 
grasping. However, in grasping, he did not consider the 
possibility of introducing novel objects during training. In 
contrast, a specialized memory replay technique called "replay 
tail" was used to preferentially replay recent experiences, 
maintain adaptation by emphasizing recent interactions during 
memory replay, and allow grasp policies to continue calibrating 
dynamic environments. 

In our approach, a simulated environment was designed to 
represent cluttered tabletop scenes with eight diverse items. A 
simulated RGB-D camera provides input point cloud data, 
based on which multiple height map representations are 
generated through slicing, projection, and an 16-way rotation. 
Specialized feature extraction via DenseNet [14] converts 
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